Free Trial

Safari Books Online is a digital library providing on-demand subscription access to thousands of learning resources.

Overview

Join author John Zdziarski for a look inside the brilliant minds that have conceived clever new ways to fight spam in all its nefarious forms. This landmark title describes, in-depth, how statistical filtering is being used by next-generation spam filters to identify and filter unwanted messages, how spam filtering works and how language classification and machine learning combine to produce remarkably accurate spam filters.

After reading Ending Spam , you'll have a complete understanding of the mathematical approaches used by today's spam filters as well as decoding, tokenization, various algorithms (including Bayesian analysis and Markovian discrimination) and the benefits of using open-source solutions to end spam. Zdziarski interviewed creators of many of the best spam filters and has included their insights in this revealing examination of the anti-spam crusade.

If you're a programmer designing a new spam filter, a network admin implementing a spam-filtering solution, or just someone who's curious about how spam filters work and the tactics spammers use to evade them, Ending Spam will serve as an informative analysis of the war against spammers.

TOC Introduction

PART I: An Introduction to Spam Filtering Chapter 1: The History of Spam Chapter 2: Historical Approaches to Fighting Spam Chapter 3: Language Classification Concepts Chapter 4: Statistical Filtering Fundamentals

PART II: Fundamentals of Statistical Filtering Chapter 5: Decoding: Uncombobulating Messages Chapter 6: Tokenization: The Building Blocks of Spam Chapter 7: The Low-Down Dirty Tricks of Spammers Chapter 8: Data Storage for a Zillion Records Chapter 9: Scaling in Large Environments

PART III: Advanced Concepts of Statistical Filtering Chapter 10: Testing Theory Chapter 11: Concept Identification: Advanced Tokenization Chapter 12: Fifth-Order Markovian Discrimination Chapter 13: Intelligent Feature Set Reduction Chapter 14: Collaborative Algorithms

Appendix: Shining Examples of Filtering

Index

Subscriber Reviews

Average Rating: 5 out of 5 rating Based on 1 Rating

No Subscribers have provided a review for this book.

Table of Contents

 Index

Extras

The publisher has provided additional content related to this title.


Description
Content

Visit the catalog page for Ending Spam

  • Catalog Page

Visit the errata page for Ending Spam

  • Errata