Free Trial

Safari Books Online is a digital library providing on-demand subscription access to thousands of learning resources.

  • Create BookmarkCreate Bookmark
  • Create Note or TagCreate Note or Tag
  • PrintPrint
Share this Page URL
Help

2. Making Recommendations > Item-Based Filtering

Item-Based Filtering

The way the recommendation engine has been implemented so far requires the use of all the rankings from every user in order to create a dataset. This will probably work well for a few thousand people or items, but a very large site like Amazon has millions of customers and products—comparing a user with every other user and then comparing every product each user has rated can be very slow. Also, a site that sells millions of products may have very little overlap between people, which can make it difficult to decide which people are similar.

The technique we have used thus far is called user-based collaborative filtering. An alternative is known as item-based collaborative filtering. In cases with very large datasets, item-based collaborative filtering can give better results, and it allows many of the calculations to be performed in advance so that a user needing recommendations can get them more quickly.


  

You are currently reading a PREVIEW of this book.

                                                                                                                    

Get instant access to over $1 million worth of books and videos.

  

Start a Free Trial


  
  • Safari Books Online
  • Create BookmarkCreate Bookmark
  • Create Note or TagCreate Note or Tag
  • PrintPrint